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I. Introduction

Progress in thermoelectrics requires new materials, and finding new materials requires new
ideas and new guidelines for materials selection.  Most of the present chapter is devoted to
explaining how a particular piece of crystallographic information—atomic displacement
parameters (ADPs)—can be used to identify materials with an extremely low lattice thermal
conductivity.  Before launching into an exposition of this new guideline, however, we briefly
review the existing guidelines as there are few places in which they are discussed all together.

Modern thermoelectrics research dates from Ioffe’s observation (Ioffe, 1957) that heavily
doped semiconductors (n = 1018 – 1020 cm-3) make the best thermoelectrics.  This observation
follows from the expression for the thermoelectric figure of merit, Z = S2σ/κ (S ≡ Seebeck
coefficient, σ≡ electrical conductivity, κ≡ thermal conductivity) and the behavior of real-world
materials as the carrier concentration is varied.  Metals have a high σ but a low S; insulators have
a high S but a low σ.  It turns out that a carrier density of about 1019 cm-3 maximizes the quantity
S2σ (known as the power factor), and such a carrier density is characteristic of a heavily doped
semiconductor.

The next guideline is the “10 kBT rule” and concerns the size of the semiconducting energy
gap.  This rule states that good thermoelectrics should have energy gaps that are 10 kBTop, where
Top is the operating temperature.  The reasoning behind this rule is as follows.  Small gaps are
generally good for thermoelectric performance because they lead to higher carrier mobilities.
However, if the gap is too small then the thermal excitation of minority carriers will adversely
affect the figure of merit, since electrons and holes carry heat in opposite directions.  An in-depth
examination of this situation has been given by Mahan et al 1989.; they find the 10kBT rule holds
for direct and indirect gaps, and for both phonon and impurity scattering.  The rule is also in
reasonable accord with experimental data on good thermoelectrics.

The theory of thermoelectrics shows that Z ∝ µ(m*)3/2 (µ ≡ carrier mobility, and m* ≡
density of states effective mass) (Goldsmid, 1986).  Therefore it is desirable to maximize both
m* and µ.  Two important guidelines for materials result from the above proportionality.  The
first follows from the observation that m* can be increased without affecting µ much if the
semiconductor has several equivalent bands;  therefore, good thermoelectrics are likely to be
multivalley semiconductors, and crystal structures with high symmetry are required to produce
several equivalent bands  (Mahan,1998; Goldsmid, 1986).  The second concerns the
electronegativity difference between the elements making up the thermoelectric material (Slack,
1995).  The electronegativity difference is a measure of the covalency of the bonding in a
material. Large electronegativity differences indicate ionic bonding, large charge transfer, and
strong scattering of electrons by optical phonons.  This strong scattering leads to low carrier
mobilities, and is one reason why oxides generally make poor thermoelectric materials.  High
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electron mobilities, on the other hand, are found in materials composed of elements with very
similar values of electronegativity.  Good thermoelectrics, then, are composed from elements
having small differences in electronegativity.

Finding materials with favorable electronic properties is only half the story.  The other half
concerns finding materials with exceptionally low values of lattice thermal conductivity.  A
simple but useful expression for the lattice component of thermal conductivity is given by κLattice

= 1/3 CVvsd, where CV is the heat capacity per unit volume, vs is the velocity of sound, and d is
the mean free path of the heat carrying phonons.  Many of the guidelines for finding materials
with a low lattice thermal conductivity can be understood from the above expression.

A key guideline is to look for materials in which the average atomic weight is high.  The
origin of this rule is simple: heavy atoms lead to small sound velocities and a correspondingly
low thermal conductivity (Ashcroft and Mermin, 1976).

Next, it is important to remember that mass fluctuation scattering can be used to reduce the
lattice thermal conductivity.  The idea behind this rule is that isovalent substitutions will scatter
heat carrying phonons strongly because the wavelength of these phonons is about the same as the
distance between the scattering centers.  Electrons, on the other hand,  have a longer wavelength
and will be scattered less.  The value of ZT will therefore increase.

Another guideline is that crystal structures with many atoms per unit cell tend to have low
lattice thermal conductivities.  This rule is not as well grounded theoretically (or experimentally)
as the first two, but nevertheless seems to be validated by experience.  One explanation for this
trend is that the number of defects per unit cell tends to grow rapidly as the size of the cell
increases.  The amount of disorder, then, tends to be relatively greater for materials with many
atoms per unit cell.  Another explanation may lie in the breakdown of the concept of a phonon as
the number of atoms in the unit cell grows large.  Remembering that there are 3n phonon modes,
where n is the number of atoms in the unit cell, it is reasonable to assume that as n grows large
these modes will begin to overlap and will no longer be distinguishable.  It has been argued by
Allen and Feldman (1993)  that thermal transport in this situation is beginning to resemble
thermal transport in a glass.

Another rule is that crystal structures in which the ions are highly coordinated tend to have
lower thermal conductivities than crystal structures in which the ions have low coordination.
This is an empirical relationship proposed by Spitzer, 1970  based on a compilation of thermal
conductivity data on more than 200 semiconductors.  We are not aware of any generally accepted
explanation for this behavior, although it is interesting that highly coordinated ions are also
involved in the reduction in thermal conductivity associated with the “rattling” cations discussed
next.

Very recently, a guideline originally proposed by Slack, 1995, involves finding materials in
which one or more atoms per unit cell  are loosely bound and “rattle” in an oversized cage.  The
cage is invariably constructed from many atoms that highly coordinate the rattler.  Such rattlers
resonantly scatter phonons, and can reduce the mean free path of the heat carrying phonons to
dimensions comparable to an interatomic spacing.  The effect on the thermal conductivity is
dramatic, as recent work on filled skutterudites (Sales et al., 1996; Sales et al., 2000) and
germanium clathrates (Cohn et al. 1999) has shown.

Finally, it is important to recognize that although these guidelines describe most of the better
thermoelectrics, there are some relatively good materials that do not obey the rules.  A good
example is NaCoO2.  This material is made up of light atoms with large electronegativity
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differences, yet at room temperature the power factor of this compound is greater than that of
Bi2Te3 (Terasaki et al., 1997).

The rest of this chapter is devoted to exploring the connection between a particular piece of
crystallographic information, atomic displacement parameters, and lattice thermal conductivity.
In the description of a new crystalline compound, crystallographers normally tabulate the room
temperature atomic displacement parameter (ADP) values for each distinct atomic site in the
structure. These values measure the mean square displacement of an atom type about its
equilibrium position and thus comprise some of the first information that is known about a new
crystalline compound. The value of the mean square atomic displacement can be due to the
vibration of the atom or to static disorder. The effects that this parameter can have on various
physical properties, however, have not been widely recognized. In particular, ADP values are not
normally used by solid state physicists or chemists as a guide in the search for new compounds
with specific properties. ADPs are regarded by many scientists as unreliable since in many of the
earliest structure determinations, the ADP values would often act as repositories for much of the
error in the structure refinement. In addition, crystallographers have not always reported ADP
information using a consistent definition, adding further confusion as to the usefulness of ADPs
(Trueblood et al. 1996). The purpose of this chapter is to illustrate that when properly
determined, the ADP values can be used as a guide in the search for crystalline materials with
unusually low lattice thermal conductivities. These materials are of particular interest in the
design of thermoelectric compounds with improved efficiencies.

II. Elementary theory of atomic displacement parameters
Atomic displacement parameters (ADP) measure the mean-square displacement amplitudes

of an atom about its equilibrium position in a crystal. In general there is no reason to assume that
the displacements are the same in all directions, or that they bear any particular relation to the
crystallographic axes. For this reason crystallographers typically report ADP information as a
3x3 matrix, Uij, that allows for anisotropic displacements. In the description of a new crystalline
compound, crystallographers normally tabulate the room temperature ADP matrix for each
distinct atomic site in the structure (Trueblood et al. 1996; Dunitz et al. 1988; Willis and Pryor,
1975, Kittel 1968). The various ADP values thus comprise some of the first information that is
known about a new crystalline compound. Often, an isotropic ADP value, Uiso, is given for each
site. Uiso corresponds to the mean square displacement averaged over all directions and is given
by one third of the trace of the diagonalized Uij matrix. Uiso is a scalar which makes it easy to
qualitatively compare the relative displacements of different atom-types in the structure.
Sometimes Uiso is the only ADP information given if the full Uij matrix cannot be extracted from
the x-ray or neutron diffraction data set or if there are no significant anisotropic displacements.
The Uij data are often expressed in crystal structure figures by drawing ellipsoids around each
atom. The surface of each ellipsoid corresponds to surfaces of constant probability. Normally the
50 percent ellipsoid is drawn corresponding to a 50 per cent probability of finding the atom
inside the ellipsoid. The 50 per cent probability ellipsoids can be drawn for each atom in the unit
cell by a computer program such as ORTEP (Oak Ridge Thermal Ellipsoid Plots, Johnson,
1965). An example of an ORTEP drawing of the semiconducting clathrate Sr8Ga16Ge30 is shown
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in Fig 1(Chakoumakos 2000). The value of the mean square atomic displacement can be due to
the vibration of the atom and/or to static disorder.

Fig 1. Structure of Sr8Ga16Ge30 as determined using powder neutron diffraction (Chakoumakos et
al. 2000). The large ellipsoids correspond to the motion of Sr atoms at the center of a large cage
consisting of 24 atoms of Ge or Ga (randomly distributed). The view shown is along the (111)
axis of the crystal.

In a neutron or x-ray diffraction experiment, thermal vibrations of the atoms reduce the
intensity of the Bragg reflections but do not effect the width. The scattered intensity, I, of a
typical Bragg peak is qualitatively given by :

                                          I = I0 exp [-1/3 <u2> (∆k)2 ]                                                   (1)

where I0  is the scattered intensity from a rigid lattice (no vibrating atoms), <u2> is the mean
square displacement of an atom about its equilibrium position, and ∆k is the magnitude of the
scattering vector (which increases as the sine of the scattering angle) (Kittel, 1968). In the
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physics literature the exponential factor is often referred to as the Debye-Waller factor. Atoms in
a crystal vibrate more at higher temperatures which implies that  <u2> increases monotonically
with temperature.

The intensity of  X-rays (or neutrons) scattered by a crystal is the sum of the Bragg scattering
and the thermal diffuse scattering (TDS). TDS corresponds to scattering in which one or more
phonons are excited. As the temperature is raised, the overall intensity from Bragg scattering
decreases with a corresponding increase in TDS.

ADP values can be reliably determined using powder neutron diffraction and single crystal
x-ray or neutron diffraction. The analysis of neutron data is usually easier for two reasons. First,
the neutron wavelength used is typically the order of 1-2 Å which is much larger than the
interaction distance between the neutron and the atomic nucleus. The nuclear scattering cross
section is, therefore, a scalar with no angular dependence. X-rays scatter from the electron clouds
around the nucleus and the resulting atomic form factor does have an angular dependence. This
means that the intensity I0 (Eq. 1) depends on angle. Since  the ADP information is in the angular
dependence of the scattered intensity (<u2> (∆k)2) (see Eq. 1), it is sometimes difficult to
separate ADP information from atomic-form-factor effects. Second, for most compounds, the
absorption correction for neutrons is small, but for x-rays absorption must be carefully
determined to obtain good ADP values, particularly for compounds with heavy elements.

In the present article ADP data are all interpreted within a harmonic approximation for the
atomic potential well. For the analysis of low temperature ADP data, this approximation is
adequete. However, there are several examples in the literature (Kisi and Yuxiang ,1998)  where
high temperature ADP data have been used to determine the anharmonic component to the
vibration. This discussion is outside the scope of this article but the interested reader can refer to
Willis and Pryor, (1975), and Kuhs (1988).

III. Interpreting ADP Data

Interpreting the meaning of the ADP information requires a model. There are two simple
models of the vibrational properties of a solid that can be used to extract useful information from
the ADP data: the Debye model and the Einstein model. As will be shown below, both of these
models are useful in understanding the thermal transport and thermodynamic properties of
clathrate-like thermoelectric compounds.
1. Einstein Model

For clathrate-type compounds, in which one of the atoms is poorly bonded and rattles in an
oversized cage, the simplest model  for the "rattler" is that of a harmonic oscillator (also called
an Einstein oscillator). In this model it is assumed that all of the rattlers vibrate independent of
each other and at the same frequency (a local mode). How far this model can be applied to the
averaged motion of an averaged atom in a crystal structure is an open question. Clearly the ADP
values provide no information about correlations with the motion of other atoms ( i.e., lattice
dynamics). This local approach, however appears to work well in interpreting the ADP
information from the rattler (Sales et al., 1999, Sales et  al, 2000).

The mean square displacement amplitude, <u2>,  of a quantized harmonic oscillator is given
by:
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Uiso  = <u2> = h/(8π2mν) •coth(hν/2kBT)                          (2)

where ν is the frequency of vibration, m is the reduced mass, and h and kB are the Planck and
Boltzmann constants, respectively (Dunitz et al., 1988). At high temperatures, where hν <<
2kBT, Eq.(2) reduces to the classical expression:

                                          Uiso = kBT/ K  =  h2T/(4π2mkB ΘE
2 )                                    (3)

where K is the spring constant of the oscillator and the Einstein temperature of the oscillator is
defined as ΘE = hν/kB. Equation 2 is plotted in Fig. 2 for several values of ΘE. From the high
temperature slope of Uiso, the Einstein temperature of the rattler can be estimated. Notice that if
the temperature at which the ADP information is known (usually room temperature) is greater
than or the order of ΘE, then the room temperature ADP data and the origin (T=0, Uiso = 0) can
be used to estimate the slope, and hence ΘE. This is significant since for a new compound usually
only room temperature ADP data are available. The above analysis, however, assumes that the
value of Uiso  is all due to dynamic motion of the atom which neglects the possibility of static
disorder. Static disorder is normally only a problem in solid solutions or in compounds that
contain large  concentrations of defects. Static disorder tends to displace the curves shown in Fig.
2 upward by a constant amount. If the static disorder is large, the ADP data from one
temperature cannot be used to estimate the Einstein (or Debye temperature, see below).
2. Debye Model

Fig. 2. Calculated mean square displacement amplitude (Uiso) of a quantum harmonic oscillator
with a mass of 100 amu and the Einstein temperatures (ΘE) shown. At high temperatures, these
curves are linear in temperature with a slope as shown.
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In a real crystal, the vibrations of different atoms are correlated and are described by specific
wavelike modes (phonons) which represent the fundamental excitations of the crystalline lattice.
In general the various phonon modes fall into 3 acoustic branches and 3N-3 optical branches,
where N is the number of atoms in the primitive unit cell (see for example Kittel, 1968, or Willis
and Pryor 1975). In principle, these modes can be determined using inelastic neutron scattering
or can be calculated using lattice dynamical models. Neither the experimental or theoretical
approaches are easy, and as a result the lattice dynamics are only understood in detail for a few
simple  materials.

The Debye model is the simplest attempt to account for the correlated motion of atoms in a
crystal. In the Debye model all of the phonons (normal modes) are assumed to have the same
velocity v, which implies a linear relationship between the frequency ω and the wavevector Κ of
each mode since v= ω/Κ, K=2π/λ where λ is the wavelength of the normal mode. The total
number of modes is limited to 3Nsolid, corresponding to the correct number of normal modes. This
implies an upper limit for ω   and Κ  normally denoted as ωD and KD. The maximum
wavenumber, KD, is simply related to the number of atoms per unit volume, n, and is given by :

                                                         KD = (6π2 n)1/3                                                          (4)
The Debye temperature, ΘD, is defined as hωD/2πkB. If the Debye temperature is known, the
average velocity of sound is also known and vice-versa since

                                             v =  ωD/ KD =  ΘD 2π kB/ [h (6π2 n)1/3]                                         (5)

 Direct measurements of the tranverse, vt, and longitudinal, vs velocities of sound can also be
used to estimate a Debye temperature or the Debye velocity of sound given in Eq. (5). For
isotropic polycrstalline samples, a frequently used expression (Anderson, 1963) is :

                                                   v = (1/3 [2/vt
3 + 1/vl

3] )-1/3                                                   (6)

  Expressions relating elastic constant data to the Debye velocity of sound also are described in
the literature (Anderson, 1963). The Debye model of lattice vibrations is in general much too
simple, but at low temperatures (typically T <  ΘD/50)  where only long wavelength phonons are
excited, the Debye model is exact.

For a monotomic cubic crystal, Uiso vs T can be solved exactly within the Debye
approximation (Willis and Pryor, 1965) and is given by :

                           Uiso = <u2> = [3h2T/(4π2mkB ΘD
2] [Φ (ΘD/T) + 0.25 ΘD/T ]                      (7)

                                                                             and

                                                             Φ( ) /x x
ydy

ey

x
=

−( )∫1
10

                                              (8)

At high temperatures (T > ΘD)   Uiso  is linear in T and is given by :
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                                                           Uiso = [3h2/(mkB4π2 ΘD
2)] T                                         (9)

and at low temperatures Uiso approaches the zero point value of  3h2/(16π2mkBΘD). Fig. 3

illustrates how Uiso depends on temperature for Debye temperatures of 100, 200, and 300 K, and
an atomic mass of 100 amu. The smaller the mean atomic mass or the lower the Debye
temperature the larger the zero point vibration. The Debye temperature can be determined from
the high temperature slope (T>ΘD) of the ADP data, as indicated in the figure. The high
temperature slope extrapolates to the origin (no zero-point energy offset). If just the room
temperature value for Uiso is used to extrapolate a slope to the origin , the error in the calculated
Debye temperature is less than 10% if the actual Debye temperature is less than 600 K. If the
Debye temperature is greater than 600 K, Eq. (7) can be used to self consistently determine the
Debye temperature. This is illustrated in Fig. 4. For example if a material has a Debye
temperature of 1200 K, using the room temperature ADP data will result in an error of 38% and
give an apparent Debye temperature that is too low (1200/1.38 = 870 K).

Fig, 3. Mean square displacement, Uiso vs. temperature scaled by the Debye temperature, ΘD, for
a monatomic cubic solid. Uiso is shown for a solid composed of atoms with a mass of 100 amu for
three different Debye temperatures. For temperatures greater than ΘD, Uiso is linear in T with a
slope as indicated.

A natural extension of this analysis to a multi-element compound is accomplished by

determining U
iso for each element (or crystallographic site) and calculating the average Uiso and

the average atomic mass. Although the extension of Eq. 7 to a multielement compound is
plausible, it should be emphasized that the main justification for this extension is that it seems to
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work fairly well for many materials. As an example, for the skutterudite LaFe4Sb12, single
crystal x-ray  diffraction data (Braun and Jeitschko, 1980) results in an average room

temperature Uiso value of (0.0165+0.0031*4+0.004*12)/17=0.0045 Å2, and an  average mass per
atom of 107 amu. This room temperature ADP data predicts a Debye temperature of 299 K
which can be compared to 308 K estimated from room temperature velocity of sound
measurements (Sales et al. 1997). Room temperature ADP data can be used to estimate the
Debye temperature and average sound velocity of any compound if the amount of static disorder
is small.

Fig. 4. Plot of error that results when room temperature ADP values are use to estimate the
Debye temperature of a solid, when the actual Debye temperature is greater than room
temperature. (see text for details).

3. Static Disorder

The effect of static disorder on  Uiso  is qualitatively shown in Fig. 5. The curves shown in
Figs 2 and 3 are displaced upward by a constant amount. In all of the thermoelectric compounds
that we have studied using neutron diffraction, static disorder has only been significant for alloys
in which the crystallographic sites are only partially occupied. For the stochiometric compounds

such as LaFe4Sb12, CeFe4Sb12, YbFe4Sb12, Tl2SnTe5, and Tl2GeTe5, the temperature dependent
ADP values all extrapolate close to the origin. This is illustrated in Figs. 6-8. In some
stochiometric compounds (e.g., Sr8Ga16Ge30) a large amount of static disorder appears to be
associated with the ability of one or more of the atom types to be displaced away from the center
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of the atomic coordination cage. These compounds will be discussed in more detail in the
Examples section of this chapter.

 Fig.5. Qualitative effects of static disorder on  Uiso vs T.

Fig. 6. Atomic displacement parameters versus temperature for LaFe4Sb12, CeFe4Sb12 and
YbFe4Sb12. For clarity only the rare earth ADP values are shown. The lines shown are least
squares fits to the data (Sales et al. 1998)
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Fig. 8 Atomic displacement parameters versus temperature for Tl2GeTe5. Note the larger ADP
values for the Tl atoms at site 1. The lines shown are a least squares fit to the data. (Sales et al.
1998)
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4. Einstein and Debye Temperatures from Room Temperature ADP Data

For compounds where static disorder can be neglected and the Debye (Einstein)
temperatures are less than 600 K (300 K), the analysis discussed above can be scaled into
two simple expressions for ΘD and ΘE:

                                      ΘD(K) = 208 / ( Uiso
av (Å2)/0.01 • mav/100)1/2                             (10)

and

                                     ΘE(K) = 120 / (Uiso
rattler/0.01 •mrattler/100)1/2

(11)

where Uiso
av (Å2) is the weighted average of room temperature values of Uiso for each atom-

type in the compound given in units of Å2, and  mav  is the average mass of an atom in the
compound given in amu. Similarly, the Einstein temperature of the rattler is given by Eq. 11
with Uiso

rattler given in Å2 and the rattler mass given in amu. As will be shown below, Eqs. 10
and 11 are useful in the rapid screening of new compounds using data extracted from one of
the many crystallographic data bases. For example the Inorganic Crystal Structure Database
(ICSD , produced by FIZ Karlsruhe) currently has over 50,500 entries and for most of the
compounds the structure is all that is known (i.e., no transport data have been measured).

IV. Clathrate-Like Thermoelectric Compounds

Room temperature ADP information can be used to estimate the Debye temperature and
an average velocity of sound for any compound using Eqs. 10 and 5. This result is well
known to crystallographers. The only restriction is that the compound should have a small
amount of static disorder so that the ADP values correspond to  dynamic motion rather than a
static displacement of the atoms.

There is a large class of promising thermoelectric compounds which contain open cages
or voids in their crystal structures into which guest atoms can be added. If the guest atom is
small relative to the size of the cage, the atom will be weakly bonded to the atoms
comprising the cage. These guest atoms are referred to as “rattlers” since at a given
temperature these atoms tend to vibrate about their equilibrium positions substantially more
than the other atom-types in the structure. Filling the open cages with rattlers rapidly reduces
the lattice thermal conductivity (see section V), which is desirable for a good thermoelectric
material. Slack (1995) has proposed that the ideal thermoelectric material with the good
electrical properties of a crystal but the poor heat conduction of a glass may be produced in
these types of compounds.

 A clathrate compound is an inclusion complex in which molecules or atoms of one
substance are completely enclosed within another compound. Ice that has trapped an inert gas
such as argon, can form a new crystalline structure called an ice clathrate in which the argon
resides at the center of a large cage of water molecules. In analogy with these clathrate
compounds, thermoelectric compounds with weakly bound atoms (rattlers) will be referred to
as “clathrate-like” compounds because as a first approximation, the rattler atoms and the cage
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framework atoms will be treated as separate phases. Examples of clathrate-like compounds
are the filled skutterudites (e.g., LaFe4Sb12), some ternary tellurides (e.g., Tl2SnTe5),
semiconducting compounds with the ice clathrate structure (e.g., Sr8Ga16Ge30), and the rare
earth hexaborides (e.g., LaB6). In all of these compounds, one of the atom types has a room
temperature ADP value that is at least three to ten times larger than that of the other atom
types in the structure with comparable masses. For example in the filled skutterudite
LaFe4Sb12, the La ADP value is 0.0165 Å2 while the Sb ADP value is only 0.004 Å2 (Braun
and Jeitschko, 1980).

As a first approximation, clathrate-like compounds are separated into two phases
consisting of framework atoms and rattling atoms. Since the rattling atoms are only weakly
coupled to the framework atoms, they are more appropriately treated as individual quantum
harmonic oscillators (Einstein oscillators). The remaining framework atoms are treated
within the Debye model. In this approximation the entire solid is composed of an Einstein
mode  in a Debye host solid. In a real solid, the Einstein mode will interact with the acoustic
phonons of the Debye host, (see Fig. 9) but it is suggested that an Einstein mode in a Debye
host is a much better starting point for understanding clathrate-like compounds than just a
Debye solid. The ultimate justification for this approximation, however, is that it results in
predictions that are in good agreement with experiment.

Fig. 9. Schematic illustration of the dispersion behavior of a Debye solid and a Debye solid
with a localized Einstein mode. The qualitative effects on the dispersion curves of the
interaction between the Einstein mode and the acoustic phonons of the solid are also
sketched

For a clathrate-like solid, an Einstein temperature for the rattler can be determined from
the ADP data. If static disorder can be neglected, the Einstein temperature can be estimated
from the room temperature ADP value using Eq. 11. If static disorder cannot be neglected,
the slope of the rattler ADP data versus temperature can be used to estimate an Einstein
temperature (the slope will be given by  h2/(4π2mkB ΘE

2 ), as in Eq. 3).
Within this same approximation, the heat capacity of a clathrate-like compound will have

a Debye contribution from the framework atoms and an Einstein contribution from the
rattlers. At high temperatures both the Einstein and Debye models for the heat capacity, Cv
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(at constant volume) approach the classical Dulong and Petit value of 3R or 24.93 J/deg-mole
–of atoms. At low temperatures, however, the Debye heat capacity decreases as T3 , while the
Einstein heat capacity has a exponential decrease with temperature. The total molar heat
capacity of a clathrate-like compound should approximately be given by :

                            Cv
Clathrate(T) =  f CDebye(T) + (1-f) CEinstein(T)                                          (12)

where, f is the fraction of framework atoms and (1-f) is the fraction of rattling atoms, and

                          CDebye T N k
T

dx
x e x
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Θ                                      (14)

As an example of this analysis, the ADP data from a partially filled skutterudite
,Tl0.22Co4Sb12 compound is shown in Fig. 10 (Sales et al., 2000). In this compound, 22% of the
available voids in the skutterudite structure are filled with thallium atoms. This is the maximum
fraction of the voids that can be filled without compensating for the Tl charge by substitution on
the Co or Sb sites. The slope of the Tl ADP data yields an Einstein temperature for the Tl atoms
of 53 K. Heat capacity measurements on Tl0.22Co4Sb12 and Co4Sb12 were made using a
commercial instrument from Quantum Design. The heat capacity difference between these two
compounds gives the contribution due to the Tl atoms. The Tl contribution is accurately
described by  an Einstein heat capacity with an Einstein temperature of 55±2 K (Fig. 11) and an
amplitude of 0.22 3R. These results are in excellent agreement with Eq. 12  and the value of 53
K predicted by an analysis of the ADP data in Fig 10.

Tl2SnTe5 is a tetragonal compound with a thermoelectric figure of merit, ZT, of about 0.6 at
300 K (Sharp et al. 1999). The ADP’s for this compound from powder neutron diffraction data
(Fig 7) and from single crystal x-ray diffraction data (Agafonov et al., 1991) indicate that the Tl
atoms at the center of a distorted cube of Te atoms have an usually large displacement relative to
the other atom-types in the structure. Both the x-ray and neutron data ADP data give an Einstein
temperature for these Tl atoms of 37±1 K. The estimated Debye temperatures for the framework
atoms (all other atom-types in the structure) are 169 K from single crystal, room temperature x-
ray data (Agafonov et al. 1991) and 125 K from powder neutron data. This difference in
estimated Debye temperatures from x-ray and neutron measurements is the largest percentage
difference (30%) among the various thermoelectric compounds that we have investigated.
Normally there is less than a 10% difference in the Debye temperatures calculated from x-ray
single crystal versus neutron ADP data. If just the single crystal x-ray ADP data is used, the
temperature of the specific heat  should be approximately given by Eq(12) with f= 7/8 (since
only one out of eight atoms in Tl2SnTe5 is treated as a rattler), and a Debye temperature of 169 K
and an Einstein temperature of 38 K. There are no adjustable parameters. A comparison between
the measured and predicted heat capacity is shown in Fig. 12. The agreement is surprisingly
good.
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At temperatures below 15 K (Fig. 12 inset), however,  the data indicate that an Einstein
temperature of about 30 K provides a better description of the heat capacity data than does the
value of 38 K determined from the room temperature ADP data.

Fig 12. Calculated and measured heat capacity for Tl2SnTe5. The calculated heat capacity was
determined from the published room temperature X-ray crystallography data of Agafonov et al.
1991. There were no adjustable parameters. The inset shows the calculated and measured heat
capacity. At low temperatures, an Einstein temperature of 30 K provides a better description of
the data than does the value of 38 K calculated from the room temperature X-ray data.

V. Estimation of the Lattice Thermal Conductivity from ADP Data

1. Elementary theory of lattice heat conduction

The simplest expression for the lattice thermal conductivity of a solid is given by an
expression adapted from the kinetic theory of gases (see for example Kittel, 1968)

                                                   κLattice = 1/3 Cv vs d                                                              (15)

where Cv is the heat capacity per unit volume, vs is the velocity of sound and d is the mean free
path of the heat carrying  phonons. In a more realistic treatment of lattice thermal conductivity,
which is discussed in the next section, the mean free path (or relaxation time) and heat capacity

depend on frequency and temperature, but for the present  analysis Cv  depends only on

temperature, while vs and d are treated as scalars.
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In section II, it was shown how room temperature ADP data can be used to estimate the
Debye temperature and the Debye velocity of sound. This analysis, which can be applied to all
compounds, provides an estimate of the room temperature values of  Cv and vs that appear in Eq.
15.  To estimate the lattice thermal conductivity using Eq. 15, however, requires a value for d.
There have been several phenomenolgical expressions derived in the literature that relate the
lattice thermal conductivity to the Debye temperature and the Gruneisen parameter, γ (or to the
melting temperature and the Gruneisen parameter). Many of these are discussed by Goldsmid
1986, pp 73-76. Most of the formulas are related to one another through various thermodynamic
relations. A typical phenomenolgical expression for the lattice thermal conductivity near room
temperature is:

                                        λ γL
B

Dx
k

h
MV T= 



 ( )−8 10 8

3
1 3 3 2/ /Θ                                          (16)

where M is the average mass of an atom (gm), V is the average atomic volume (cm3) and a
typical value for the Gruneisen parameter is 1.8. Since all of the quantities in (16) can be
obtained from the crystallography data, equations such as  Eq. (16) can provide a first estimate of
the thermal conductivity of any material. The estimates may be off, however, by as much a
factor of 5-10. For example if the thermal conductivity of the filled and unfilled skutterudites are
analysed using Eq.(16), both the filled and unfilled materials have about the same average mass,
atomic volume and Debye temperatures so that the room temperature lattice thermal conductivity
of Co4Sb12 should be about the same as LaFe4Sb12. The room temperature lattice thermal
conductivity of LaFe4Sb12, however, is 5 to 6 times lower than that of Co4Sb12.

In general there is no easy way to estimate the value of d at room temperature using just
crystallography data. Hence, for most compounds there is no obvious way to estimate the lattice
thermal conductivity to better than about a factor of 5.

For clathrate-like compounds, it has been experimentally observed by several groups (Nolas
et al. 1998,    Meisner et al., 1998, Sales et al. 2000) that as relatively small concentrations of
rattlers (La, Ce, or Tl) are added to the skutterudite structure (Co4Sb12) there is an extremely
rapid decrease in the lattice thermal conductivity. The mean free path, d, of the heat carrying
phonons in these compounds is determined by the various scattering mechanisms in the crystal
such as acoustic phonons, grain boundaries, electron-phonon scattering, static defects, voids and
“rattlers”. Resonant scattering by quasi-localized “rattlers” appears to be the dominant scattering
mechanism responsible for the rapid decrease in the thermal conductivity as small amounts of Tl,
La or Ce are placed in the voids. This mechanism is believed to be similar to the resonant
scattering described by Pohl for insulating crystals (Pohl, 1962) and by Zakrzewski and White
(1992) in insulating organic clathrates. It has been demonstrated that mass fluctuation scattering
is much too weak to explain the rapid decrease in thermal conductivity (Nolas et al. 1998). The
thermal resistivity of the lattice (1/thermal conductivity) at room temperature is shown in Fig. 13
as Tl is added to the voids in Co4Sb12. Thermal resistivity is shown rather than thermal
conductivity because as a first approximation, the scattering rates for different scattering
processes should add (Mathiesson’s rule). There is an rapid initial increase in the thermal
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resistance, followed by a gradual saturation of the thermal resistance as higher concentrations of
Tl are added to the voids. Within experimental error, there is no clear maximum in the thermal
resistance data as a function of Tl concentration, and the maximum thermal resistance occurs
near complete filling for both the Fe and Sn compensated compounds. The maximum attributed
to mass fluctuation scattering by Meisner et al., 1998 as a function of Ce filling is not observed
in the present experiments.

If the Tl atoms are treated as localized Einstein oscillators, as suggested by Keppens et
al.1998, then the heat carrying phonon mean free path, d,  should be a function of the distance
between the Tl atoms in the crystal. The simplest estimate of the phonon mean free path is
therefore the average distance between the Tl atoms. This implies that the phonon scattering
from the Tl is so strong that d attains a minimum distance given by the average Tl –Tl
separation. The scattering of acoustic phonons by the Tl should be a maximum when the acoustic
phonon and rattling frequency are equal (Pohl, 1962); however, even at resonance it seems
physically unlikely that d could be less than the Tl-Tl separation distance.  This simple argument
suggests that if the role of other scattering mechanisms is minimal, that the thermal resistivity
should vary as x1/3, where x is the Tl concentration (the average spacing between Tl atoms varies
as x-1/3) . The additional thermal resistance generated as Tl is added to Co4Sb12 reasonably
follows an  x1/3 behavior  (Fig 13), even though part of the thermal resistance is due to electron-
phonon scattering and other scattering mechanisms (Sales et al. 2000).

Fig 13. Variation of the room temperature lattice thermal resistivity vs the fraction of the voids
filled with the rattler Tl. The average separation distance between Tl rattlers varies as x-1/3. The
square (circles) refer to charge compensation with Sn (Fe). For all but the two lowest Tl
concentrations, x ≈ y.
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A plausible approximation for d in clathrate-like compounds is therefore the average
separation distance between the rattlers, which is  known from the crystallography data.  At room
temperature, this argument works well for the Tl-filled skutterudites (Fig 13.) It also works for
the filled skutterudites such as LaFe4Sb12. Using the measured thermal conductivity, heat
capacity and an average value for the velocity of sound  yields a  mean free path of  d = 9 Å
(Sales et al. 1997). The nearest-neighbor distance of the La atoms in LaFe4Sb12 is 7.9 Å. The real
test of this hypothesis is whether this analysis gives good estimates of the room temperature
lattice thermal conductivity for a variety of clathrate-like compounds. As will be shown in Sec
VI,  for many clathrate-like systems replacing d in Eq. 15 by the average distance between the
rattlers predicts a room temperature lattice thermal conductivty in suprisingly good agreement
with experiment. This means that for clathrate-like compounds room temperature
crystallography data can be used to provide a reasonable estimate of the lattice thermal
conductivity. This is significant since a low lattice thermal conductivity is a requirement for a
good thermoelectric material.

2. Lattice heat conduction: a more realistic model
 A more realistic model of lattice heat conduction of a solid, within the Debye

approximation, has been described by Callaway, 1959 and Klemens, 1958. The lattice thermal
conductivity, κ

Lattice
, is given by:

                                           κ
ω

τ ω ω ω
Lattice

D
v T

dC

d
d= ( )∫1 3 2

0
/ ,                             (17)

with

                                              τ ω τ ω− −= ( )∑1 1( , ) ,T Tii
                                                (18)

where, ωD is the Debye frequency, v is the Debye velocity of sound, τI is the relaxation time for
the ith phonon scattering mechanism, T is the temperature in Kelvin, and dC/dω is the specific
heat per angular frequency. Within the Debye model, the specific heat per angular frequency is
obtained from Eq. 13 by a change of variables, replacing x by hω/2πkBT. Notice that since v is a
constant in the Debye model, the phonon mean free path is just:

                                                            d(ω,T) = v τ(ω,T)                                                   (19)

In a crystal various processes can scatter phonons. For the present purposes we will follow
the approach described by Pohl 1962, and Walker and Pohl 1963 and consider the the minimum
number of scattering mechanisms that can account for the experimental data. For a solid with no
resonant scattering (no rattlers) the normal scattering mechanisns are grain boundary scattering,
τB

-1 , isotope or mass fluctuation scattering, τiso
-1 (Klemens 1958) and phonon-phonon scattering

(umklapp and normal), τ−1
U,N (Walker and Pohl 1963) . These various scattering terms are given

by:

                                                            τB
-1 = v/L                                                                 (20)
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                                                    τiso
-1=V0Γ ω4/4π = C ω4                                                    (21)

with                                         Γ = −



∑ f m

mi
i

i1
2

                                                            (22)

and                                            τ−1
U,N= Bω2 Τ e b T− /                                                             ( 23)

with Vo is the atomic volume, L is the average grain size, mi is the mass of the ith atom, m is the
average atomic mass, and fi is the relative concentration of the ith species. Equation 23 is a
phenomenological expression that accounts for both umklapp and normal phonon-phonon
scattering (Walker and Pohl, 1963). These three scattering processes (Eqs. 20-23) can account
for the temperature dependence of the the thermal conductivity of  compounds with no rattlers,
such as Co4Sb12. The resonant scattering by the rattlers can be phenomenologically described by
a function that is proportional to the concentration of rattlers, and is peaked at the Einstein
frequency of the rattler:

                                 τ ω ω ω ω
ω ω

− = − =
−

1
0 0

2
2

2 2 2resonant E
E

A f A T( ) ( )
( )

                                     (24)

where A0 is proportional to the rattler concentration and the particular form of the function f is
taken from Walker and Pohl (1963).

With regard to the clathrate-like compounds, simple calculations using only the Eqs. 17-
24 do not reproduce the behavior shown in Fig 13. The calculated thermal resistance increases
linearly with the rattler concentration Ao and does not saturate as is indicated in Fig 13. One of
the key ideas to understanding the data displayed in Fig 13 is the concept of a minimum thermal
conductivity or a maximum thermal resistance first proposed by Slack in 1979. In any solid,
Slack proposed that it does not make sense to consider a mean free path for the heat carrying
phonons that is less than an interatomic spacing (d ≈ 3 Å). This hypothesis, which is born out by
experiment (Cahill et al. 1992  ), suggests that for a crystalline compound the minimum thermal
conductivity corresponds to a glass with the same composition for which d ≈ 3 Å = 3x10-8 cm.
This means that there is a cutoff for the maximum scattering rate given by τ-1

max= v/3x10-8 s-1,
where the velocity of sound is given in cm/s. For materials with thermal conductivities that
approach within an order of magnitude or so of the minimum value, Eq 18 is replaced by:

                                                 d T v T dii
( , ) [ , ] minω τ ω= ( ) +− −∑ 1 1                            (25)

where dmin ≈ 3Å.

 To see if this approach produces reasonable results, the temperature dependence of thermal
conductivity of the unfilled skutterudite Co4Sb12 (no rattlers) was fit using Eqs 17 and 25. The
measured Debye temperature (307 K), velocity of sound (2.93x105 cm/s) and grain size (10-3cm)
were used as input parameters. The three constants (C,B and b)  in Eqs. 21 and 23 were adjusted
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to give a fit to the experimental data (Fig 14). The values used were C=1.58x10-42 sec3, B=
3.87x10-18 sec/K, and b= 150 K (These values are in the same range as found by Walker and
Pohl, 1963)

Fig 14. Fit to the lattice thermal conductivity of a polycrystalline CoSb3 sample with an average
grain size of 0.001 cm using Eqs. 17, 20-23 and 25. See text for details.

The resonant phonon scattering due to the addition of Tl rattlers was then modeled using the
same parameters used to fit the Co4Sb12 data plus a resonant term  (Eq. 24) with A0 = A 7.42 x
1032 sec-3K-2 where A is dimensionless and is proportional to the concentration of Tl rattlers. An
Einstein frequency was taken from the experimental data (Fig. 11) and corresponded to an
Einstein temperature of 55 K. The effect on the thermal conductivity of increasing the strength of
the resonant scattering is shown in Fig. 15 . In this simple model there is expected to be a dip in
the thermal conductivity at a temperature  between 10 and 20 K for an Einstein temperature of 55
K. Careful thermal conductivity measurements in this temperature range have not been made  for
the Tl filled skutterudites. A dip has been recently seen, however, in a related compound,
Sr8Ga16Ge30 (Cohn et al. 1998). The motivation, however, for calculating the lattice thermal
conductivity as a function of Tl concentration was to see if the behavior in Fig 13 could be
understood. The room temperature thermal resistance from the calculated data shown in Fig 15 is
plotted in Fig 16 vs the amplitude of the resonant scattering (the parameter A). A least squares fit
of a power law to the data yield an exponent of 0.35.  This exponent is relatively constant for
large variations in A and is surprisingly close to the value of 1/3 obtained by simply using the
average distance between rattlers for d (Sec. V.1). The calculated and measured thermal
resistivity data can be compared directly if the proportionality constant between A and the Tl
concentration x is determined. The room temperature thermal resistance of the Tl0.8Co4SnSb11
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sample is about 50 cm-K/W. This value is obtained in the model calculation with a value of
A≈20. A comparison between the calculated and measured thermal resistance is shown in Fig.
17. The agreement is good.

Fig. 15. Log of lattice thermal conductivity vs. log T calculated using Eqs 17, and 20-25. The
strength of the resonant scattering and the concentration of rattlers is proportional to the
parameter A (Eq 24.) The other parameters are the same as used to fit the Co4Sb12 data (The
triangles on the A=0 curve are the same Co4Sb12 data shown in Fig 14.). See text for details.
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Fig 16. Calculated thermal resistance at room temperature vs  the resonant scattering
amplitude, A. The room  temperature thermal resistance is from the calculated data shown in Fig
15. A is proportional to the concentration of rattlers, x.

Fig. 17.  Thermal resistivity vs Tl concentration, a comparison between the model calculation
and the experimental data. The thermal resistance of the Tl0.8Co4SnSb11 sample was used to
determine the proportionality constant between the resonant scattering amplitude, A, and the Tl
concentration x.
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VI. Examples

In this section, ADP data will be used to extract as much information as possible about the
properties of several different families of clathrate-like compounds. Because the vast majority of
crystallography data reported in the literature are taken with x-rays, where possible x-ray ADP
data will be used in the analysis. The predicted results from the analysis of the ADP data will be
compared to the results from a variety of different measurements.

1. Filled Skutterudites: LaFe4Sb12, and YbFe4Sb12

Single crystal x-ray data are available for LaFe4Sb12 (Braun and Jeitschko, 1980) and
YbFe4Sb12 (Leithe-Jasper et al. 1999). The room temperature x-ray data from each compound
were analyzed using Eqs. 10 and 11. The estimated Debye temperatures were 299 K for
LaFe4Sb12 and 238 K for YbFe4Sb12. The corresponding Einstein temperatures were 79 K for La
and 62 K for Yb. Room temperature velocity of sound data (Sales et al., 1997)  and low
temperature heat capacity data (Gajewski et al.,1998) give Debye temperatures for LaFe4Sb12 of
300 ±10 K. Low temperature heat capacity data on YbFe4Sb12 (Dilley et al., 1998) yielded a
Debye temperature of 190 K, although the a magnetic contribution to the heat capacity data at
low temperatures make this value uncertain.  The estimated room temperature lattice thermal
conductivity from the room temperature x-ray ADP data using  Eq. 15 with d replaced by the
rattler separation distance ( about 7.9 Å for La  or Yb) is 0.014 W/cm-K for LaFe4Sb12  and 0.011
W/cm-K for YbFeeSb12. These values can be compared to the measured values of 0.017 W/cm-K
for LaFe4Sb12 (Sales et al. 1997) and 0.014 W/cm-K for YbFe4Sb12 (Dilley et al., 2000).

The Einstein temperature for the La in LaFe4Sb12 should result in a peak in the La phonon
density of states near 79 K. The La phonon density of states was recently measured using
inelastic neutron scattering. (Keppens et al. 1998). A clear peak in the La phonon density of
states was observed at 80 K along with a weaker and broader peak near 175 K (Fig. 18). Both
peaks can be understood within the framework of a detailed investigation of the lattice dynamics
of LaFe4Sb12 (Feldman et al. 2000, Feldman and Singh ,1996). Qualitatively  the two peaks result
from a hybridization process similar to that sketched in Fig. 9. A recent summary of ADP
information from a variety of filled skutterudite phases has been reported by Kaiser and
Jeitschko, 1999 and Chakoumakos et al. 1999.
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Fig. 18.  Difference in the inelastic neutron scattering data between LaFe4Sb12 and CeFe4Sb12

versus energy loss. The incident neutron energy was 30 meV and the energy resolution was 2
meV. CeFe4Sb12 was used as a reference because the neutron scattering cross section of Ce is
much smaller than that of La. The difference spectra therefore reflects the vibrational density of
states (DOS) associated with the La atoms. The peaks at 7 and 15 meV correspond to
temperatures of 80 and 175 K(Keppens et al., 1998).

2. Tl2SnTe5

The structure of Tl2SnTe5 was first reported by Agafonov et al. in 1991. This compound has
a room temperature value for ZT of 0.6 (Sharp et al. 1999). The compound is tetragonal with
columns of Tl ions along the crystallographic c axis. There are two distinct Tl sites in the
structure and at one of the sites the Tl atoms sits near the center of a large, oversized distorted
cube. The Tl ADP parameter at this site is considerably larger than for the other atoms in the
structure and the Tl at this site will be treated as a rattler. From the room temperature  x-ray ADP
data (Agafonov et al. 1991) the Einstein temperature of the Tl rattler was estimated to be 38 K
and the Debye temperature of the other atoms in the compound was 169 K. As was shown in
Sec. IV, these values can be used to estimate the temperature dependence of the heat capacity,
and the calculated heat capacity is in good agreement with the measured values (Fig. 12). The
estimate of the room temperature lattice thermal condutivity from the ADP data is 0.0039 W/cm-
K. The measured lattice thermal conductivity for Tl2SnTe5 is shown in Fig. 19 and at room
temperature is close to 0.004 W/cm-K.
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Fig 19. Lattice thermal conductivity versus temperature for vitreous silica, Tl2SnTe5 and
Tl2GeTe5. The Wiedemann-Franz law has been used to estimate and subtract the electronic
portion of the thermal conductivity. The lines through the data are guides to the eye.

3. LaB6

LaB6 is not a good thermoelectric material but it is a clathrate-like compound. LaB6 crystallizes
in a simple body-centered cubic structure with La at the cube center and B6 octahedral clusters at
each cube corner (Fig. 20). LaB6 is a good metal (ρ300 K = 5 µΩ-cm) that is used as an electron
source in most high-performance electron microscopes. Because of its technological importance,
much is known about the properties of LaB6. When normalized by mass, the lanthanum ions
“rattle” significantly more about their equilibrium positions than do the borons. Using published
ADP data (Korsukova et al. 1986) on LaB6, the Einstein temperature of the La was calculated to
be 140 K and the Debye temperature for the boron sublattice to be about 1500 ±200 K. The
extrapolation graph shown in Fig. 4 was used because of the high Debye temperature of the
boron sublattice. The temperature dependence of the heat capacity was calculated using an
Einstein contribution weighted by 1/7 and a Debye contribution weighted by 6/7. The Debye
temperature was adjusted to 1200 K (rather than 1500 K) to provide a better fit to the data. The
agreement between the calculated heat capacity and the measured values is shown in Fig. 21.
The unusual bump in the heat capacity data at about 70 K is accurately accounted for by this
simple analysis using only room temperature ADP data and a 20% adjustment of the Debye
temperature for the boron sublattice. Large single crystals of La11B6 allowed Smith et al.(1985) to
map the phonon dispersion curves using neutron scattering.
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Fig. 20 Model of LaB6 crystal structure. La atoms (large ball) sit at the center of a cube with B6

“molecules” at each cube corner. As a first approximation, the La atoms can be treated as
Einstein oscillators in a Debye solid composed of B atoms.

Fig 21. Calculated and measured heat capacity of LaB6. Room temperature x-ray ADP data from
Korsukova et al. 1986 were used to determine the Einstein temperature for the La and a Debye
temperature for the B. (See text for details)
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unusually energy-independent phonon mode was found over most of the Brillioun zone at
energies corresponding to an Einstein temperature of 150 K; a value close to the 140 K value
estimated from the ADP data. This mode was attributed by Smith to the independent vibration of
the La atoms in LaB6.

4. Semiconducting clathrates : Sr8Ga16Ge39 and Ba8Ga16Ge30

These compounds are cubic and have the same structure as the type I ice clathrates
(Eisenmann et al. , 1986). The thermoelectric properties of Sr8Ga16Ge30 and similar compounds
were first reported by Nolas et al. 1998 and Cohn et al. 1999. The structure can be thought of as
a tetrahedral framework of Ga and Ge atoms. The framework atoms form large cages of 20 or 24
atoms that surround the Sr or Ba atoms in the structure. The alkaline earth atoms in the larger
cage have unusually large ADP values.  Room temperature x-ray ADP data for the Ba clathrate
(Eisenmann et al. 1986) coupled with Eqs. 10 and 11 estimates an Einstein temperature of 51 K
for the Ba atoms, and a Debye temperature of 274 K for the rest of the atoms in the structure.
This results in a Debye sound velocity of 2.6 x 105 cm/s, and a predicted room temperature
lattice thermal conductivity of about 0.008 W/cm-K. (Eq. 15, with d given by the nearest
neighbor distance between the Ba rattlers.) The measured lattice thermal conductivity (Fig 22) is
about 0.016 W/cm-K. Although the measured lattice thermal conductivity is about twice the
predicted value, this is still better agreement than most other simple methods of estimating lattice
thermal conductivity. In general it should be expected that the estimate will be lower than the
measured value since it is assumed in this simple analysis that the rattlers scatter phonons at the
maximum possible rate (corresponding to d given by the rattler separation distance).

There are no published single crystal x-ray  ADP data for the Sr clathrate, so the neutron data
reported by Chakoumakos et al. 2000, will be used. ADP data for this compound are available
from room temperature down to 11 K (Fig 23). The ADP values of Sr atoms in the large cage
(Sr2 in the figure) are huge relative to the other atoms in the structure. The temperature
dependence of the Sr2 ADP data is unusually weak, however, suggesting a large amount of static
disorder. Such a large amount of static disorder in a nominally stochiometric compound is
unusual as can be seen from comparing the ADP data in figures 6-8 with the data shown in Fig
23. If just the room temperature ADP data are used, the Sr rattlers appear to have an Einstein
temperature of 44 K and a Debye temperature for all the atoms  of 180 K (without the ratler, this
value would be 246 K). For this compound, however, static disorder cannot be ignored-at least
for the Sr2 site. Taking the slopes of the ADP data results in a Einstein temperature of 85 K for
the Sr rattler, and a Debye temperature of about 270 K and a mean sound velocity of 2.6x105

cm/s. The estimated room temperature lattice thermal conductivity is 0.008 W/cm-K. If only the
room temperature ADP data were used, the estimated lattice thermal conductivity would be
lowered to about  0.006 W/cm-K. The measured value of the room temperature lattice  thermal
conductivity of Sr8Ga16Ge30 is about 0.010 W/cm-K (Fig 22, also see Nolas et al. 1998, Cohn et
al. 1999). The large amount of static disorder at the Sr2 site is due to the tendency of the Sr
atoms at this site to move or tunnel off center to one of four nearby sites located about 0.75 Å
from the center of the cage. The combination of tunneling, in addition to rattling, is apparently
responsible for the qualitative difference between the thermal conductivity of the Sr and Ba
clathrates. The rattling of the Ba results in a low thermal conductivity but the temperature
dependence is crystal-like, while the rattling and tunneling of the Sr results in a true glasslike
thermal conductivity (Fig 22, see also Cohn et al. 1999, and Keppens et al. 2000).
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Fig 22. Lattice thermal conductivity versus temperature for Sr8Ga16Ge30 and Ba8Ga16Ge30

crystals. The thermal conductivity of the Ba clathrate, although small, has a crystalline
temperature dependence whereas the temperature dependence of the Sr clathrate is glasslike.

Fig 23. Temperature dependence of the isotropic atomic displacement parameters for
Sr8Ga16Ge30. Note the large and weak temperature dependence of the ADP values for Sr at site 2
in the structure. See text for details. (Chakoumakos et al., 2000).
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5. CeRuGe3

To further test some of the simple ideas discussed in this chapter, room temperature ADP
information was used to identify a compound that should have a very low lattice thermal
conductivity. Unusually large ADP values for one of the Ce sites were reported by Ghosh et al
1995  for the cubic compound CeRuGe3 (space group Pm3n, a= 9.0061 Å). The results of the
refinement, which was done using both x-rays and neutrons suggests that one Ce site contains
Ce3+ ions and the other Ce4+ ions. A detailed study of the electron density around the various
crystallographic sites concluded that the Ce4+ ions can tunnel or move away from the site center
(much like the Sr ions discussed above). Analysis of the room temperature ADP data from this
compound gives an Einstein temperature for the Ce4+ of 23 K and a Debye temperature of 128 K
(or 155 K for all of the atoms except the Ce rattlers) and an average sound velocity of 1.37 x 105

cm/s. The distance between the Ce rattlers is 7.9 Å, and the lattice thermal conductivity at room
temperature is estimated to be 0.008 W/cm-K.  The measured lattice thermal conductivity (Fig
24) is about 0.005 W/cm-K after the electronic contribution has been subtracted using the
Wiedemann-Franz law. CeRuGe3 has a low lattice thermal conductivity, but also has a low
Seebeck coefficient and hence is not a promising thermoelectric material.

 Fig 24. Thermal conductivity vs temperature for CeRuGe 3. The electronic thermal conductivity
was subtracted from the total using the Wiedemann-Franz law.

VII. Summary

A new structure-property relationship is discussed that links atomic displacement parameters
and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like
compounds, in which one of the atom types is weakly bound and “rattles”  within its atomic
cage, it is demonstrated that room temperature ADP information can be used to estimate the
room temperature lattice thermal conductivity, the vibration frequency of the “rattler” and the
temperature dependence of the heat capacity. X-ray and neutron diffraction crystallography data,
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reported in the literature, are used to apply this analysis to several promising classes of
thermoelectric materials.
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